If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2+10x-495=0
a = 3; b = 10; c = -495;
Δ = b2-4ac
Δ = 102-4·3·(-495)
Δ = 6040
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{6040}=\sqrt{4*1510}=\sqrt{4}*\sqrt{1510}=2\sqrt{1510}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-2\sqrt{1510}}{2*3}=\frac{-10-2\sqrt{1510}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+2\sqrt{1510}}{2*3}=\frac{-10+2\sqrt{1510}}{6} $
| -3x+2=6x-22 | | 3(y–2)=27 | | 7t-4=5t+16 | | 6x-11=-8x+24 | | 5x-(2x-5)=1-3(2-x) | | 2x+2.48–0.14x=9.92 | | 2x-3/4-2x-3/3=1 | | 4x8-7x=20 | | 6y-2(-17+3y)=10 | | 51-5x=16 | | (3x-1)*(2x+4)=(3x-1)*(x-2) | | 3x-34=10x-13 | | 3r+7=34r= | | 6y-2(3y+17)=10 | | 6m−3=10+6(2+m) | | -14+x/4=6 | | 11c-9=46 | | 10x+43=2x-29 | | 316-3x=400 | | 8x-45=4x-21 | | 1/2+3/2(x+1)-4=5 | | c^2=24c-5 | | 109+6x=29-4x | | x^2-21x=-57 | | a=3a+4+1 | | 3z-8=-7z+12 | | 4(3+2x)=7-2(3x+1) | | 0.2x+14=0.4x | | 1-(1÷4)x-2-(2÷3)x=19 | | 2x5+3=8x25 | | 4x-2+10-2x=5x-7 | | z2-12z=0 |